2024

[57] J. Wang, L. Liu, Z. Wang, Y. Jing, and Y. Chen, Generalized Bloch boundary conditions based on a symmorphic space group and the finite-element implementation in photonic crystal,"J. Opt. Soc. Am. B 41, 1031-1038 (2024).

https://opg.optica.org/josab/abstract.cfm?uri=josab-41-4-1031

点群对称性结合Bloch定理截断光子晶体本征频率问题计算区域

2023

[56] Guo, W., Cai, Z., Xiong, Z., Chen, W. & Chen, Y. Efficient and accurate numerical-projection of electromagnetic multipoles for scattering objects. Front. Optoelectron. 16, 48 (2023).

https://link.springer.com/article/10.1007/s12200-023-00102-2

本论文基于comsol 计算的散射场,给出了任意散射体电磁多极子分解的高效精确投影分解算法,代码已开源,详见Github

[55] Wang, P., Chen, Y. & Liu, W. Multi-mode optical chirality extremizations on the incident momentum sphere. Opt. Express, OE 31, 28939–28945 (2023).

https://opg.optica.org/oe/abstract.cfm?uri=oe-31-18-28939

[54] Ma, Z., Chen, W.-J., Chen, Y., Gao, J.-H. & Xie, X. C. Flat band localization due to self-localized orbital. Front. Phys. 18, 63302 (2023).

https://doi.org/10.1007/s11467-023-1306-2

[53] Wang, Z., Wang, J., Liu, L. & Chen, Y. Rotational Bloch Boundary Conditions and the Finite-Element Implementation in Photonic Devices. Photonics 10, 691 (2023).

https://www.mdpi.com/2304-6732/10/6/691

旋转Bloch边界条件在有限元中的应用

2022

[52] Guo, W. et al. Simple yet effective analysis of waveguide mode symmetry: generalized eigenvalue approach based on Maxwell’s equations. Opt. Express, OE 30, 37910–37924 (2022).

https://opg.optica.org/oe/abstract.cfm?uri=oe-30-21-37910

[51] Zhang, B. et al. Dispersion-Suppressed Mode Depletion by Exceptional Points for On-Chip Nonlinear Optics. Phys. Rev. Appl. 18, 034028 (2022).

https://link.aps.org/doi/10.1103/PhysRevApplied.18.034028

[50] Yang, Q., Chen, W., Chen, Y. & Liu, W. Ideal Kerker scattering by homogeneous spheres: the role of gain or loss. Beilstein J. Nanotechnol. 13, 828–835 (2022).

https://www.beilstein-journals.org/bjnano/articles/13/73

[49] Xiong, Z. et al.K-space thermodynamic funneling of light via heat exchange. Phys. Rev. A 105, 033529 (2022).

https://link.aps.org/doi/10.1103/PhysRevA.105.033529

使用等效热力学的方法实现k空间光漏斗

2021

[48] Shi, H. et al. Robust exceptional point of arbitrary order in coupled spinning cylinders. Opt. Express, OE 29, 29720–29729 (2021).

https://opg.optica.org/oe/abstract.cfm?uri=oe-29-19-29720

[47] Yang, H. et al. Optically Reconfigurable Spin-Valley Hall Effect of Light in Coupled Nonlinear Ring Resonator Lattice. Phys. Rev. Lett. 127, 043904 (2021).

https://link.aps.org/doi/10.1103/PhysRevLett.127.043904

[46] Chen, W., Yang, Q., Chen, Y. & Liu, W. Extremize Optical Chiralities through Polarization Singularities. Phys. Rev. Lett. 126, 253901 (2021).

https://link.aps.org/doi/10.1103/PhysRevLett.126.253901

[45] Chen, W., Yang, Q., Chen, Y. & Liu, W. Evolution and global charge conservation for polarization singularities emerging from non-Hermitian degeneracies. PNAS 118, (2021).

https://www.pnas.org/content/118/12/e2019578118

[44] Yang, Q., Chen, W., Chen, Y. & Liu, W. Symmetry Protected Invariant Scattering Properties for Incident Plane Waves of Arbitrary Polarizations. Laser & Photonics Reviews 15, 2000496 (2021).

https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.202000496

[43] Xiong, Z., Chen, W., Wang, Z., Xu, J. & Chen, Y. Finite element modeling of electromagnetic properties in photonic bianisotropic structures. Front. Optoelectron. 14, 148–153 (2021).

https://doi.org/10.1007/s12200-021-1213-5

针对光学双各向异性结构的有限元仿真方法

2020

[42] Xiong, Z., Zhang, R.-Y., Yu, R., Chan, C. T. & Chen, Y. Hidden-symmetry-enforced nexus points of nodal lines in layer-stacked dielectric photonic crystals. Light: Science & Applications 9, 176 (2020).

https://www.nature.com/articles/s41377-020-00382-9

研究了一维层叠光子晶体中的光学隐藏对称性及自旋1圆锥折射效应

[41] Wu, B., Ding, K., Chan, C. T. & Chen, Y. Machine Prediction of Topological Transitions in Photonic Crystals. Phys. Rev. Applied 14, 044032 (2020).

https://link.aps.org/doi/10.1103/PhysRevApplied.14.044032

[40] Yang, Q., Chen, W., Chen, Y. & Liu, W. Scattering and absorption invariance of nonmagnetic particles under duality transformations. Phys. Rev. A 102, 033517 (2020).

https://link.aps.org/doi/10.1103/PhysRevA.102.033517

[39] 陈云天, 王经纬, 陈伟锦, & 徐竞. 互易波导模式耦合理论. Acta Phys. Sin. 69, 154206–13 (2020).

https://wulixb.iphy.ac.cn/cn/article/doi/10.7498/aps.69.20200194

[38] Yang, Q., Chen, W., Chen, Y. & Liu, W. Electromagnetic Duality Protected Scattering Properties of Nonmagnetic Particles. ACS Photonics 7, 1830–1838 (2020).

https://doi.org/10.1021/acsphotonics.0c00555

[37] Chen, W., Yang, Q., Chen, Y. & Liu, W. Scattering activities bounded by reciprocity and parity conservation. Phys. Rev. Research 2, 013277 (2020).

https://link.aps.org/doi/10.1103/PhysRevResearch.2.013277

[36] Xiong, Z. et al. On the constraints of electromagnetic multipoles for symmetric scatterers: eigenmode analysis. Opt. Express, OE 28, 3073–3085 (2020).

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-28-3-3073

光学散射体的空间群对散射体本征模式的电磁多极子分解的约束

[35] Chen, W., Chen, Y. & Liu, W. Line Singularities and Hopf Indices of Electromagnetic Multipoles. Laser & Photonics Reviews 14, 2000049 (2020).

https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.202000049

2019

[34] Hu, B. et al. Robust inverse-design of scattering spectrum in core-shell structure using modified denoising autoencoder neural network. Opt. Express, OE 27, 36276–36285 (2019).

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-25-36276

[33] Hu, H. et al. Lumped Dissipation Induced Quasi-Phase Matching for Broad and Flat Optical Parametric Processes. IEEE Photonics Journal 11, 1–8 (2019).

[32] Shi, H. et al. Gauge-field description of Sagnac frequency shift and mode hybridization in a rotating cavity. Opt. Express, OE 27, 28114–28122 (2019).

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-20-28114

[31] Chen, Y. et al. Non-Abelian gauge field optics. Nature Communications 10, 3125 (2019).

https://www.nature.com/articles/s41467-019-10974-8

[30] Wu, B. et al. S-parameters, non-Hermitian ports and the finite-element implementation in photonic devices with 𝒫𝒯-symmetry. Opt. Express, OE 27, 17648–17657 (2019).

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-13-17648

[29] Li, W., Tan, D., Xu, J., Wang, S. & Chen, Y. Finite element based Green’s function integral equation for modelling light scattering. Opt. Express, OE 27, 16047–16057 (2019).

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-11-16047

[28] Chen, W., Xiong, Z., Xu, J. & Chen, Y. Generalized coupled-mode formalism in reciprocal waveguides with gain, loss, anisotropy, or bianisotropy. Phys. Rev. B 99, 195307 (2019).

https://link.aps.org/doi/10.1103/PhysRevB.99.195307

[27] Chen, W., Chen, Y. & Liu, W. Singularities and Poincar\’e Indices of Electromagnetic Multipoles. Phys. Rev. Lett. 122, 153907 (2019).

https://link.aps.org/doi/10.1103/PhysRevLett.122.153907

[26] Wang, S. et al. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nature Communications 10, 832 (2019).

https://www.nature.com/articles/s41467-019-08826-6

[25] Chen, W., Chen, Y. & Liu, W. Multipolar Conversion Induced Subwavelength High-Q Kerker Supermodes with Unidirectional Radiations. Laser & Photonics Reviews 13, 1900067 (2019).

https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201900067

2018

[24] Lu, Y., Chen, Y., Xu, J., Wang, T. & Lü, J.-T. Decay channels of gap plasmons in STM tunnel junctions. Opt. Express, OE 26, 30444–30455 (2018).

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-23-30444

[23] Liu, Z., Zhang, Q., Qin, F., Chen, Y. & Xiao, J. J. Mode coupling in\mathcal{PT}-symmetric photonic crystals with a flat band. Phys. Rev. A 98, 043844 (2018).

https://link.aps.org/doi/10.1103/PhysRevA.98.043844

[22] Yang, H. et al. On the Hamiltonian form of cross-mode modulation in nonlinear optical waveguides. Opt. Lett., OL 43, 5005–5008 (2018).

https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-20-5005

[21] Peng, L. et al. Giant Asymmetric Radiation from an Ultrathin Bianisotropic Metamaterial. Advanced Science 5, 1700922 (2018).

https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201700922

[20] Xu, J., Liu, J., Shi, H. & Chen, Y. Spatial mode discriminator based on leaky waveguides. J. Opt. 20, 065801 (2018).

http://stacks.iop.org/2040-8986/20/i=6/a=065801

[19] Peng, L. et al. Spin Momentum–Locked Surface States in Metamaterials without Topological Transition. Laser & Photonics Reviews 12, 1800002 (2018).

https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201800002

2017

[18] Xiong, Z., Chen, W., Wang, P. & Chen, Y. Classification of symmetry properties of waveguide modes in presence of gain/losses, anisotropy/bianisotropy, or continuous/discrete rotational symmetry. Opt. Express, OE 25, 29822–29834 (2017).

https://www.osapublishing.org/abstract.cfm?uri=oe-25-24-29822

研究复杂介质光波导中几种常见对称性对材料介质,波导结构及光学模式的约束

[17] Chen, Y., Zhang, Y. & Koenderink, A. F. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures. Opt. Express, OE 25, 21358–21378 (2017).

https://www.osapublishing.org/abstract.cfm?uri=oe-25-18-21358

[16] Liu, Z.-Z., Zhang, Q., Chen, Y. & Xiao, J.-J. General coupled-mode analysis of a geometrically symmetric waveguide array with nonuniform gain and loss. Photon. Res., PRJ 5, 57–63 (2017).

http://www.osapublishing.org/abstract.cfm?uri=prj-5-2-57

[15] Wu, B., Wang, J., Xiao, M., Xu, J. & Chen, Y. Strong hybridization of edge and bulk states in dimerized PT-symmetric coupled waveguide chain. Opt. Express, OE 25, 1040–1049 (2017).

http://www.osapublishing.org/abstract.cfm?uri=oe-25-2-1040

[14] Peng, L. et al. Layer-by-Layer Design of Bianisotropic Metamaterial and its Homogenization. Progress In Electromagnetics Research 159, 39–47 (2017).

http://www.jpier.org/PIER/pier.php?paper=17041502

2016

[13] Wu, B., Wu, B., Xu, J., Xiao, J. & Chen, Y. Coupled mode theory in non-Hermitian optical cavities. Optics Express 24, 16566 (2016).

https://www.osapublishing.org/abstract.cfm?URI=oe-24-15-16566

2015

[12] Ou, Y., Pardo, D. & Chen, Y. Fourier finite element modeling of light emission in waveguides: 25-dimensional FEM approach. Optics Express 23, 30259 (2015).

https://www.osapublishing.org/abstract.cfm?URI=oe-23-23-30259

[11] Iida, D. et al. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles. AIP Advances 5, 097169 (2015).

http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931948

[10] Xu, J. & Chen, Y. General coupled mode theory in non-Hermitian waveguides. Optics Express 23, 22619 (2015).

https://www.osapublishing.org/abstract.cfm?URI=oe-23-17-22619

[9] Xu, J., Wu, B. & Chen, Y. Elimination of polarization degeneracy in circularly symmetric bianisotropic waveguides: a decoupled case. Opt. Express 23, 11566–11575 (2015).

http://www.opticsexpress.org/abstract.cfm?URI=oe-23-9-11566

2014

[8] Fadil, A. et al. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement. Scientific Reports 4, 6392 (2014).

http://www.nature.com/articles/srep06392

2013

[7] Kumar, S., Huck, A., Chen, Y. & Andersen, U. L. Coupling of a single quantum emitter to end-to-end aligned silver nanowires. Applied Physics Letters 102, 103106 (2013).

http://scitation.aip.org/content/aip/journal/apl/102/10/10.1063/1.4795015

2012

[6] Munsch, M. et al. Linearly Polarized, Single-Mode Spontaneous Emission in a Photonic Nanowire. Phys. Rev. Lett. 108, 077405 (2012).

http://link.aps.org/doi/10.1103/PhysRevLett.108.077405

2011

[5] Frimmer, M., Chen, Y. & Koenderink, A. F. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control. Phys. Rev. Lett. 107, 123602 (2011).

http://link.aps.org/doi/10.1103/PhysRevLett.107.123602

[4] Chen, Y., Wubs, M., M?rk, J. & Koenderink, A. F. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides. New J. Phys. 13, 103010 (2011).

http://stacks.iop.org/1367-2630/13/i=10/a=103010

2010

[3] Chen, Y., Lodahl, P. & Koenderink, A. F. Dynamically reconfigurable directionality of plasmon-based single photon sources. Phys. Rev. B 82, 081402 (2010).

http://link.aps.org/doi/10.1103/PhysRevB.82.081402

[2] Chen, Y., Gregersen, N., Nielsen, T. R., Mørk, J. & Lodahl, P. Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes. Opt. Express, OE 18, 12489–12498 (2010).

https://www.osapublishing.org/abstract.cfm?uri=oe-18-12-12489

[1] Chen, Y., Nielsen, T. R., Gregersen, N., Lodahl, P. & Mørk, J. Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides. Phys. Rev. B 81, 125431 (2010).

http://link.aps.org/doi/10.1103/PhysRevB.81.125431